Network Anomaly Detection using Fuzzy Gaussian Mixture Models
نویسندگان
چکیده
Fuzzy Gaussian mixture modeling method is proposed in this paper for network anomaly detection. A mixture of Gaussian distributions was used to represent the network data in multi-dimensional feature space. Gaussian parameters were estimated using fuzzy c-means estimation. The method was tested with the KDD Cup data set. Experimental results have shown that the proposed method is more effective than the vector quantization method.
منابع مشابه
Anomaly Intrusion Detection System Using Hierarchical Gaussian Mixture Model
In this paper we proposed Hierarchical Gaussian Mixture Model (HGMM) a novel type of Gaussian Mixture which detects network based attacks as anomalies using statistical preprocessing classification. This method learns patterns of normal and intrusive activities to classify that use a set of Gaussian probability distribution functions. The use of Maximum likelihood in detection phase has used th...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملAdaptive Anomaly-Based Intrusion Detection System Using Fuzzy Controller
The major work of intrusion detection systems is used to detect the anomaly and new attackers in the networks, even still various false alarms are caused in order to neglect this necessary feature. Existing system present an anomaly-based intrusion detection system to improve the system performance. Fuzzy rule-based modeling and fuzzy controller are used to create a detection model in the train...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS
In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008